[Pattern recognition] Linear regression & Classification
시작하기전에Permalink
본 포스팅은 패턴인식 수업 수강 후 Linear regression & Classification 에 대한 기본적인 지식들에 대해 복습할 기회 제공을 위해 개인적으로 만든 복습 문제 및 정답 포스팅입니다.
QuestionsPermalink
-
What is the formula for optimal goal of linear regression?
-
What is the formula for realistic goal of linear regression?
-
What is the differentiate of matrix?
-
What is the Normal-equation?
-
Can we optimize the Normal-equation?
-
What is the Hessian-matrix? (Machine learning perspective)
-
What is the parameter?
-
What is the hyper-parameter?
-
What is the formula of gradient descent?
AnswerPermalink
- Eout(h)=E[(h(x)−y)2]
- Finding h(x) for optimizing Eout(h)
- Ein(h)=1/NSsigmaNn=0
-
(h(xn)−yn)2=1/NΣ(n=1)N
-
$(w^T x_n-y_n )^2=1/N ( Xw-y ) ^2$ - h(x)=Σ(i=0)dwixi=wTx
-
If XTX can be invertable, W can have unique solution. Or W can have non-unique solution.
-
The matrix able to proving that loss is convex.
-
The variables optimized by machine.
-
The variables determined by human.
-
w(t+1)=w(t)−n∇(E(train(w(t)))).
댓글남기기